skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Carlson, Colin_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The emergence of SARS-CoV-2 highlights a need for evidence-based strategies to monitor bat viruses. We performed a systematic review of coronavirus sampling (testing for RNA positivity) in bats globally. We identified 110 studies published between 2005 and 2020 that collectively reported positivity from 89,752 bat samples. We compiled 2,274 records of infection prevalence at the finest methodological, spatiotemporal and phylogenetic level of detail possible from public records into an open, static database named datacov, together with metadata on sampling and diagnostic methods. We found substantial heterogeneity in viral prevalence across studies, reflecting spatiotemporal variation in viral dynamics and methodological differences. Meta-analysis identified sample type and sampling design as the best predictors of prevalence, with virus detection maximized in rectal and faecal samples and by repeat sampling of the same site. Fewer than one in five studies collected and reported longitudinal data, and euthanasia did not improve virus detection. We show that bat sampling before the SARS-CoV-2 pandemic was concentrated in China, with research gaps in South Asia, the Americas and sub-Saharan Africa, and in subfamilies of phyllostomid bats. We propose that surveillance strategies should address these gaps to improve global health security and enable the origins of zoonotic coronaviruses to be identified. 
    more » « less
  2. Abstract Quantifying how global change impacts wild populations remains challenging, especially for species poorly represented by systematic datasets. Here, we infer climate change effects on masting by Joshua trees (Yucca brevifoliaandY. jaegeriana), keystone perennials of the Mojave Desert, from 15 years of crowdsourced observations. We annotated phenophase in 10,212 geo‐referenced images of Joshua trees on the iNaturalist crowdsourcing platform, and used them to train machine learning models predicting flowering from annual weather records. Hindcasting to 1900 with a trained model successfully recovers flowering events in independent historical records and reveals a slightly rising frequency of conditions supporting flowering since the early 20th Century. This reflects increased variation in annual precipitation, which drives masting events in wet years—but also increasing temperatures and drought stress, which may have net negative impacts on recruitment. Our findings reaffirm the value of crowdsourcing for understanding climate change impacts on biodiversity. 
    more » « less